Abedi, A. S., Rismanchi, M., & Shahdoostkhany, M. (2017). Microwave-assisted extraction of
Nigella sativa L. essential oil and evaluation of its antioxidant activity.
Journal of Food Science and Technology, 54, 3779–3790.
https://doi.org/10.1007/s13197-017-2718-1
Afzal, I. (2023). Invited review - Seed priming: What’s next? Seed Science and Technology, 51. https://doi.org/10.15258/sst.2023.51.3.10
Ahmadian, A., Shiri, Y., & Froozandeh, M. (2015). Study of germination and seedling growth of black cumin (
Nigella sativa L.) treated by hydro- and osmopriming under salt stress conditions.
Cercetari Agronomice in Moldova, 48, 69–78.
https://doi.org/10.1515/cerce-2015-0031
Al-Doori, S. (2024). Determining optimum efficiency of using foliar spraying with different concentrations of nano nickel and copper on growth traits, yield components and quality of some black cumin (
Nigella sativa L.) genotypes regarding semi-arid regions.
Journal of Medicinal and Industrial Plant Sciences, 2(1), 37–51.
https://doi.org/10.32894/MEDIP.24.1.5
Al-Qadi, M., & Almohammedi, A. (2024). Response of
Nigella sativa L. for spraying with glycine, lysine and iron and its effect on growth and yield.
Journal of Medicinal and Industrial Plant Sciences, 2(1), 72–87.
https://doi.org/10.32894/MEDIP.24.1.8
Al-Rawi, K. M., & Khalaf-allah, A. M. (2011). Design and analysis of agriculture experiments. College of Agriculture and Forestry, Mussel University. [In Arabic]
Alshammari, S. (2017). Light, salinity and temperature effects on the seed germination of
Nigella sativa L.
Global Journal of Biology, Agriculture & Health Sciences, 6(1), 25–31.
https://doi.org/10.24105/gjbahs.6.1.1706
Ambreen, M. A., Afzal, R., Reema, Y., Huma, A., & Hadeer, D. (2024). Impact of zinc oxide nanoparticles on biosynthesis of thymoquinone in cell cultures of
Nigella sativa.
Volume 10, 100–109.
https://doi.org/10.1016/j.plana.2024.100109
Aparna, B., Gladis, R., Gowripriya, & Aswathy, U. (2021). Effect of different sources of zinc on the activities of plant and soil enzymes.
International Journal of Agricultural Sciences, 17, 42–47.
https://doi.org/10.15740/HAS/IJAS/17.1/42-47
Das, S., Avasthe, R., Singh, M., Dutta, S., & Roy, A. (2018). Zinc in plant-soil system and management strategy.
Agrica, 7, 1.
https://doi.org/10.5958/2394-448X.2018.00001.9
Davoodi, S. H., Biyabani, A., Karizaki, A. R., Sanavi, S. A. M., Modares, E., Alamdari, E. G., Gholamalipour, & Zaree, M. (2020). Effect of iron and zinc nano chelates on yield and yield components of black cumin medicinal plant (
Nigella sativa L.).
GSC Journal, 18(3).
https://doi.org/10.22067/gsc.v18i3.8572
Ekren, S., Paylan, I. C., & Gokcol, A. (2023). Seed quality improvement applications in black cumin seeds (
Nigella sativa L.).
Frontiers in Sustainable Food Systems, 7.
https://doi.org/10.3389/fsufs.2023.1212958
Ghassemi-Golezani, K., Afsaneh, C.-J., Safar, N., & Mohammad, M. (2010). Influence of hydro-priming duration on field performance of pinto bean (
Phaseolus vulgaris L.) cultivars.
African Journal of Agricultural Research, 5(9), 893–897.
http://www.academicjournals.org/AJAR
Islam, M. T., Khan, R., & Mishra, S. K. (2019). An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of
Nigella sativa L.
Oriental Pharmacy and Experimental Medicine, 19(2), 115–129.
https://doi.org/10.1007/s13596-019-00363-3
Javed, R., Yucesan, B., Zia, M., & Gurel, E. (2018). Elicitation of secondary metabolites in callus cultures of
Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress.
Sugar Tech, 20, 194–201.
https://doi.org/10.1007/s12355-017-0539-1
Kamal, A., Jamal, M. A., & Iffat, Z. A. (2010). Potential of
Nigella sativa L. seed during different phases of germination on inhibition of bacterial growth.
Journal of Biotechnology and Pharmaceutical Research, 1(1), 009–013.
http://www.e3journals.org/JBPR
Khalaki, M. A., Moameri, M., Behnam, A. L., & Astatkie, T. (2020). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants.
Plant Growth Regulation, 93(1), 13–28.
https://doi.org/10.1007/s10725-020-00670-9
Kiralan, M., Ulas, M., Özaydın, A. G., Ozdemir, N., & Ramadan, M. F. (2016). Changes in hexanal, thymoquinone and tocopherols levels in blends from sunflower and black cumin oils as affected by storage at room temperature.
Rivista Italiana Delle Sostanze Grasse, 93(4), 229–236.
https://2u.pw/T4FWo
Kumar, S., & Anand, R. (2021). Effect of germination and temperature on phytic acid content of cereals.
International Journal of Research in Agricultural Sciences, 8(1).
https://2u.pw/SrlUs
Maaroof, S. M., Jasim, M. A., & Khalid, K. A. (2025). The scientific guide to measure field crop traits (2nd ed.). https://doi.org/10.13140/RG.2.2.21920.15367
Mohamed F. R. Hassanien, M. F. R., Mahgoub, S. A., & El-Zahar, K. M. (2014). Soft cheese supplemented with black cumin oil: Impact on food borne pathogens and quality during storage.
Saudi Journal of Biological Sciences, 21(3), 280–288.
https://doi.org/10.1016/j.sjbs.2013.10.005
Muhammad, O., & Al-Falahi, M. (2023). Effect of spraying nano fertilizer NPK and nano fertilizer microelements on the growth characteristics of maize plants (
Zea mays L.).
IOP Conference Series: Earth and Environmental Science, 1252, 012063.
https://doi.org/10.1088/1755-1315/1252/1/012063
Nemtinov, V., Kostanchuk, Y., Motyleva, S., Pekhova, O., Timasheva, L., Pashtetskiy, V., & Katskaya, A. (2022). Morphometric and biochemical assessment of
Nigella sativa L. genotypes of European-Asian origin.
Journal of Breeding and Genetics, 54(3), 659–670.
https://doi.org/10.54910/sabrao2022.54.3.18
Paparella, S., de Sousa Araújo, S., Rossi, G., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives.
Plant Cell Reports, 34(8), 1281–1293.
https://doi.org/10.1007/s00299-015-1784-y
Papastylianou, P., Bakogianni, N. N., Travlos, I., & Roussis, I. (2018). Sensitivity of seed germination to salt stress in black cumin (
Nigella sativa L.).
Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46, 202–205.
https://doi.org/10.15835/nbha46110861
Rehman, A., Farooq, M., Ahmad, R., & Basra, S. (2015). Seed priming with zinc improves the germination and early seedling growth of wheat.
Seed Science and Technology, 43.
https://doi.org/10.15258/sst.2015.43.2.15
SAS Institute. (2016).
Statistical analysis software (SAS) user’s guide version 9.4. Cary, NC: SAS Institute, Inc.
https://2u.pw/Rn3vxmDY
Sharma, A., Rathore, S. V. S., Srinivasan, K., & Tyagi, R. (2014). Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (
Abelmoschus esculentus L. Moench).
Scientia Horticulturae, 165, 75–81.
https://doi.org/10.1016/j.scienta.2013.10.044
Suri, S., Kumar, V., Tanwar, B., Goyal, A., & Gat, Y. (2019). Impact of soaking and germination time on nutritional composition and antioxidant activity of
Nigella sativa.
Current Research in Nutrition and Food Science Journal, 7, 142–149.
https://doi.org/10.12944/CRNFSJ.7.1.14
Tan, U. (2024). Effects of seed priming on germination of
Nigella sativa L. and comparison of germination performance with yield parameters in field conditions.
Turkish Journal of Agriculture - Food Science and Technology, 12(6), 1026–1032.
https://doi.org/10.24925/turjaf.v12i6.1026-1032.6769
Tawfik, W. A., & Al-Naqeeb, G. (2020). Effect of geographical origin on the physicochemical properties and antioxidant activity of
Nigella sativa L. seed oils.
Journal of the Saudi Society of Agricultural Sciences, 19(5), 366–372.
https://doi.org/10.1016/j.jssas.2020.03.001
Thakur, A., Kumari, S., Chakraborty, T., Kumari, A., & Dhiman, S. (2024). Influence of different seed primings in enhancing seed germination of vegetable and field crops.
The Pharma Innovation, 13, 12–17.
https://2u.pw/AQ0m3
Ustun, G., Kent, L., Cekin, N., & Civelekoglu, H. (2014). Investigation of the technological properties of
Nigella sativa L. seed oil.
Journal of the American Oil Chemists Society, 67(12), 71–86.
https://doi.org/10.1007/BF0254185