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ABSTRACT 

Cluster analysis and principal component analysis are multivariate analyses used widely to assess genetic 

diversity. The present study was conducted in the Autumn of 2024 at the Grdarasha experimental station, College of 

Agriculture Engineering Sciences, Salahaddin University, Erbil, Iraq, to assess the phenotypic genetic diversity among 

20 sweet and forage corn single-cross hybrids using cluster and principal component analysis. Results demonstrated 

that the 20 single-cross hybrids were significantly different from each other. Moreover, almost all of the traits studied 

showed high broad-sense heritability, which is important for selecting corn single-cross hybrids. Cluster analysis and 

principal component analysis revealed a high level of genetic diversity, which has implications for characterizing, 

conserving, and breeding sweet and forage corn single-cross hybrids, as well as for categorizing them. The hybrids 

under study were divided into six different groups based on the performance of phenotypic traits, indicating that the 

hybrids have a varied genetic background. The cluster analysis and principal component analysis were also able to 

separate sweet corn well from the forage corn. This indicated the differentiation of the genetic makeup of sweet corn 

from forage corn. Biplot analysis showed positive correlations among ear yield and several traits such as ear weight, 

ear length, number of kernel rows per ear, number of leaves per plant, ear height, plant height, number of leaves per 

ear, leaf area, stem diameter, and number of ears per plant. A correlation of the first three principal component analyses 

accounted for 76.26% of the variation, indicating a significant variation among the hybrids studied . 
KEYWORDS: Corn; Biplot; Heritability; Single-Cross Hybrids; Genetic Diversity. 
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 الحلوة والعلفية استنادًا إلى  (.Zea mays L) التنوع الوراثي للهجن المفردة من الذرة

  تحليل المجموعة الظاهرية والمكونات الرئيسية  
 نياز رشيد مصطفى 

 ، العراق.شقلاوة، جامعة صلاح الدين، أربيل -، كلية التربية علوم الحياةقسم 

 الملخص

وتحليل المكونات الرئيسيييية  ما تحليلات متعددا المتايرات يخسيييتعدمات على نطاق واييييا لتقييم التنو. الورا  .  يتحليل العنقودال

التجريبية، بكلية علوم الهندييية الاراعية، جامعة صييلاح الدين،   گردەرەشيي    محطة  2024أخجريت  ذه الدراييية    يريع عام 

 يتحليل العنقودال جينًا أحادي التهجين من الذرة الحلوة والعلفية باييييتعدام  20أربيل، العراق، لتقييم التنو. الورا   المظهري بين 

وتحلييل المكونيات الرئيسيييييية. أنهرت النتيائا ايتلا يًا كبيرًا بين الهجن العيييييرين أحياديية التهجين. علاوة على  لي ، أنهرت جميا  

وايييا ، و و أمر مهم تيتيار  جن الذرة أحادية التهجين. كيييع الالنطاق  علىمرتفا    العصييائا المدروييية تقريبًا معدر توري 

وتحليل المكونات الرئيسيييية عن مسيييتو  عارل من التنو. الورا  ، مما يى ر على توصييييع وحفه وتربية  جن  يتحليل العنقودال

مت الهجن قيد الدرايية للى ييت مجموعات معتلفة بناىً على أداى  الذرة الحلوة والعلفية أحادية التهجين، بالإضيا ة للى تصينيفها. قخسيت 

وتحليل المكونات الرئيسييية من  قوديتحليل العناللها يلفية ورا ية متنوعة. كما تمك ن  الصييفات المظهرية، مما ييييير للى أت الهجن  

أنهر تحليل القطا   صييل الذرة الحلوة جيداً عن الذرة العلفية. و ذا يخيييير للى تمايا التركيج الجين  للذرة الحلوة عن الذرة العلفية.

الثنائية ارتباطات ليجابية بين لنتاج الكوز وعدد من الصيييفات، مثل وزت الكوز، وطور الكوز، وعدد صيييفوو الحبول    الكوز، 

وعدد الأوراق    النبات، وارتفا. الكوز، وارتفا. النبات، وعدد الأوراق    الكوز، ومسيياحة الورقة، وقطر السيياق، وعدد الكوز 

% من التباين، مما يييير للى تباين كبير بين  76.26وقد ييا م ارتباط تحليلات المكونات الرئيسيية الثلا ة الأولى بنسيبة      النبات.

    .الهجن المدروية

  .اتيتلاو الجين  ؛احادية التهجين ؛التوري  ؛التنو. الورا   ؛الذرة  الكلمات المفتاحية:

INTRODUCTION  

Corn is distinguished by a variety of forms with highly differentiated features, both botanical 

and of utility character. Among the corn subspecies grown, sweet corn has become increasingly 

https://doi.org/10.32894/MEDIP.25.3.3.10
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important. Its production is constantly increasing in all countries due to its taste and nutritional value, 

making it a valued crop (Szymanek et al., 2006). In terms of forage, corn normally produces higher 

energy yields than other forage crops, particularly when it contains the leaves, stalks, and ears. It is 

an energy-rich feed for livestock (Brewbaker, 2003). The limiting factors of corn growers in the 

Kurdistan Region of Iraq are the development, improvement, maintenance, and uncontrolled quality 

of inbred lines. Hence, because of the absence of locally produced hybrid seeds, corn farmers must 

pay a high price for imported seeds, which raises the price of production (Mustafa et al. 2025). 

Genetic variability is a crucial element for developing successful breeding programs and is 

essential for adapting to environmental changes. Genetic Diversity (GD) differs from genetic 

variability, which pertains to the actual phenotypic differences observed within a specific population 

(Šućur et al., 2023). Melchinger and Gumber (1998) reported that various assessment techniques, 

including phenotypic markers, pedigree information, heterosis, and molecular markers, have been 

used to evaluate GD in plants. Due to their affordability, ease of measurement, and speed, phenotypic 

markers have been widely employed to assess GD (Rahman et al., 2015). According to Zafar et al. 

(2022), the levels of selection, recombination, mutation, and random genetic drift all influence the 

amount of GD in crop germplasm. Selection and genetic drift eliminate certain alleles, while mutation 

and recombination introduce new variations into a population.  

Various statistical techniques are used to characterize diversity within and between plant 

species (Ivandro Bertan et al., 2007). The level of GD can be measured using both univariate and 

multivariate methods. Recently, multivariate analyses have gained popularity as a means to estimate 

the level of genetic variation across different traits (Chavan et al., 2023). Genetic divergence between 

two species or individuals is measured by genetic distance, which helps evaluate the degree of genetic 

variation between them (Ivandro Bertan et al., 2007). To ensure all phenotypic variables contribute 

equally to the distance calculation, they are typically standardized before applying statistical grouping 

methods (Khodadadi et al., 2011). According to Muhammadi and Prasanna (2003), this 

standardization eliminates the effects of unit discrepancies in the measurement of each variable on 

variances and covariances. Fotokian et al. (2002) stated that standardization reduces differences 

between groups.  

Cluster analysis (CA) and principal component analysis (PCA) are the two most commonly 

used multivariate techniques in GD research (Mohammadi and Prasanna, 2003). CA, as defined by 

Peeters and Martinelli (1989) and Chavan et al. (2023), is an essential method for classifying data by 

dividing genetic material into several homogeneous groups based on morphogenetic features. In CA, 

various algorithms have been employed to study genetic diversity. The most prevalent include: I) 

Hierarchical Clustering; II) Non-Hierarchical Clustering (e.g., K-means) (Mohammadi and Prasanna, 
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2003); III) Other useful algorithms (e.g., PCA, principal coordinate analysis (PCoA), and 

STRUCTURE); and IV) Distance/dissimilarity measures. According to the literature on plant 

germplasm collection structure, the most widely used clustering techniques are Ward's method (Ward, 

1963) and the Unweighted Pair Group Method of Arithmetic Means (UPGMA) (Sokal and Michener, 

1958). 

Since PCA does not remove any samples or features, it serves as a foundation for multivariate 

data analysis. It is commonly used in plant sciences to reduce large datasets, enhance interpretability, 

and minimize information loss simultaneously (Stephen et al., 2016; Chavan et al., 2023). 

Additionally, PCA generates two- or three-dimensional scatter plots of individuals, allowing the 

genetic distances between genotypes to be represented by the geometric distances between points. 

Standardized values are employed to investigate how each attribute contributes to overall variability 

(Obeng-Antwi et al., 2011). The initial step in PCA involves calculating eigenvalues, which reflect 

the total variance along the PC axes. The first PC accounts for most of the variability in the original 

data compared to all other PCs. The second PC explains most of the remaining variability not captured 

by the first and is uncorrelated with it, and so forth (Jolliffe, 1986). 

A biplot is a type of graph used in multivariate analysis to visualize the structure and 

relationships within a dataset, often using the results of principal component analysis (PCA) or 

singular value decomposition (SVD). It is a graphical representation that combines information about 

both observations and variables. It enables researchers to visualize the relationships between 

genotypes and traits, as well as how these relationships change across different environments. The 

PCA biplot (Gower and Hand, 1996) is a more modern representation that displays variables with 

calibrated axes and observations as points. This allows you to project the observations onto the axes 

and approximate the variables' initial values. 

 Therefore, this study aims to capture the potential phenotypic GD between a set of imported 

sweet and forage single-cross corn hybrids grown in the Kurdistan Region of Iraq using CA and PCA. 

MATERIALS AND METHODS 

Twenty single-cross hybrids of sweet and forage corn, imported from varied origins, were 

used in this study (Table 1). These hybrids were chosen based on their adaptability to the Kurdistan 

region. This experiment was conducted at the Grdarasha Experiment Station / College of Agricultural 

Engineering Sciences / Salahaddin University / Erbil (8 km southwest / 36.101.16" North; 44.009.25" 

East, and 415 meters above sea level). The climate of the region is described as semi-arid. The soil 

has a silty clay loam texture, and the soil pH was 7.5. 
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Table 1. List of The Imported Sweet and Forage Single-Cross Corn Hybrids Used in The Study. 
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1 Arma ARM Sweet Corn Single-Cross 

2 Krmenia KRM Sweet Corn Single-Cross 

3 Snowy River SNR Sweet Corn Single-Cross 

4 Sugar SUG Sweet Corn Single-Cross 

5 Bilicious BIL Sweet Corn Single-Cross 

6 Burpee BUR Sweet Corn Single-Cross 

7 Sunny day SUD Sweet Corn Single-Cross 

8 Talar TAL Sweet Corn Single-Cross 

9 Syngenta SGA Forage Corn Single-Cross 

10 DKC6589 DSN Forage Corn Single-Cross 

11 SY Batanga SBA Forage Corn Single-Cross 

12 Dekalb 6664 DKB Forage Corn Single-Cross 

13 MX420 MTO Forage Corn Single-Cross 

14 MX580 MFO Forage Corn Single-Cross 

15 DKC5401 DFO Forage Corn Single-Cross 

16 Agromar AOR Forage Corn Single-Cross 

17 MX610 MSZ Forage Corn Single-Cross 

18 DKC6664 DSF Forage Corn Single-Cross 

19 Reserve RSV Forage Corn Single-Cross 

20 NK Lucius NLS Forage Corn Single-Cross 

The experimental units were ploughed to a depth of 15-30 cm, fo11owed by soil rotorvation. 

Two seeds were manually planted per spot with four 3-meter-1ong rows at a density of 70 cm × 20 

cm. The seedlings were thinned to one per point, ten days after planting. Fertilizers were applied 

seven days after planting, using NPK 15:15:15 at a rate of 120:120:120 kg/ha. In addition, Urea 

fertilizer (46% N) was applied at 15 and 35 days after planting in equal splits. Weeds were manually 

controlled. Over the entire plant growth cycle, dripped irrigation was used. 

Hybrids were evaluated during the Autumn Season of 2024. Ten plants were selected from 

the middle two rows of each hybrid plot. The data were collected for ear yield (E.Y.) (Kg/ha), ear 

weight (E.W.) (g), ear length (E.L.) (cm), ear diameter (E.D.) (mm), number of leaves per ear 

(N.E.L.), number of kernel rows per ear (N.K.R.E.), number of kernels per row (N.K.R.), number of 
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leaves per plant (N.L.P.), stem diameter (S.D.) (mm), plant height (P.H.) (cm), ear height (E.H.) (cm), 

leaf area (L.A.), chlorophyll content (CHL), and number of ears per plant (N.E.P.). The hybrids were 

evaluated in a Randomized Complete Block Design (RCBD), with three replications. The data 

collected were analyzed using the PROC GLM (General Linear Model) of the Statistical Analysis 

System version 9.4 software (SAS Institute Inc., 2014). Subsequently, environmental, genotypic, and 

phenotypic variances were calculated based on the formu1a recommended by Johnson et al. (1955). 

𝜎𝑒
2 = 𝑀𝑆𝑒   …………………………..1 

σg
2 =  

𝑀𝑆𝑔−𝑀𝑆𝑒

𝑟
    ……………………..2 

σp
2 =  σg

2 + σe
2    ……………………..3 

Were, 𝑀𝑆𝑒 = error mean square, 𝑀𝑆𝑔 = genotypic mean square, and 𝑟 = replication. 

Then, h2
b was calculated based on the formula proposed also by Johnson et al. (1955): 

ℎ𝑏
2 =  

𝜎𝑔
2

𝜎𝑝
2  × 100   …………………….4 

h2
b estimates were categorized based on the scale proposed by McWhirter (1979). 

> 20%= Low\  20-50% = Moderate\ < 50% = High 

Since the units for phenotypic data varied among traits, the data were first weighted according 

to the formula described by Milligan and Cooper (1988), using NTSYS-pc (Rohlf, 2002). 

s =  
xij− x̅

σ
    ……………..………..5 

Where:  s = standardized value , 𝑥𝑖𝑗  = observation from ith genotype in jth block , 𝑥̅  =  mean 

value of measured trait, and σ = standared deviation of measured trait . 

The standardized data were utilized to construct the resemblance matrix of genetic distance 

among the hybrids based on the average Euclidean distance (Sokal and Michener, 1958), as follows: 

𝑑𝑖𝑗 =  √
1

𝑛
 ∑ 𝑘 (𝑥𝑘𝑖 +  𝑥𝑘𝑗)2  ..……6 

Where, dij = genetic distance between two hybrids, xki = phenotypic observation of kth trait in ith 

hybrid,  xkj = phenotypic observation of kth trait in jth hybrid, and n = sample size. 

There are many computer programs available to do CA and PCA. These include more 

specialized programs like SAS, SPSS, NTSYS-pc, Genetix, ADE-4, GenAlEx, and PCAgen (Weising 

et al., 2005), and recently, Grapes (Gopinath et al., 2020) and Agri Analyze (trio Radhika et al., 2023) 
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could be added, which not only compute multivariate statistics but also graphically present the 

analysis's findings. In the present study, the CA was then constructed using the UPGMA following 

the Sequential Agglomerative Hierarchical and Nested (SAHN) method by software Numerical 

Taxonomy System (NTSYS-pc: Version 2.1) (Rohlf, 2002), to observe GD based on phenotypic 

distance coefficients. A biplot analysis was run to visualize the correlation of traits with single-cross 

hybrids. The data matrix with columns representing traits, and rows representing the genotypes, was 

first standardized and then subjected to PCA to obtain the information on the traits most effective in 

discriminating genotypes on the first three PCs using the R package through the General R-shiny 

based Analysis Platform Empowered by Statistics in Agriculture part-1 (grapes Agril) Version 1.1.0 

(Gopinath et al., 2020). 

RESULTS AND DISCUSSION  

Performance of hybrids 

The Analysis of Variance (ANOVA) is a statistical formula used to compare variances across 

different groups' means (or averages). The results of ANOVA conducted for each trait are shown in 

Table 2. The block effect was insignificant at p ≤ 0.05 for all measured traits. The impacts of hybrids 

were significant (p < 0.05) for all traits measured, except for E.D. The existence of reasonable genetic 

variability among these traits could be utilized in sweet and forage corn breeding programs separately 

to produce new varieties possessing the desired combinations of these traits. This finding was 

consistent with previous reports (Woldemariam, 2004; Mustafa, 2021). 

Broad-sense heritability (h2
B)  

h2
B is crucial for assessing the proportion of total phenotypic variance attributable to genetic 

factors. Bhardwaj et al. (2020) suggested that selection for traits with very high h2
B (70% or more), 

should be easy because the phenotype and genotype synchronize closely due to the minimal impact 

of the environment on the phenotype, while traits with low h2
B are extremely difficult or practically 

unsuitable for selection because of the tendency of the environments to mask genotypic impact.  The 

results showed high h2
B for most traits studied (Table 2). Indicating that a good match between 

phenotypic and genotypic values for most traits measured, and thereby a low environmental impact 

on the expression of these traits, and selection for these traits would be simple. High h2
B for the traits 

is controlled by a multigene, which could be useful for selection (Ranjitha et al. 2018). However, 

environmental factors influenced E.D. (3.88%), which indicates a low h2
B. Additionally, there were 

no significant differences for this particular trait (ED) among the hybrids, as exhibited by ANOVA. 

N.R.E. (47.36%) shows moderate h2
B. Similarly, high h2

B in sweet corn was reported by Mustafa 

(2021). Mustafa et al. (2021) noted moderate to high estimates for all traits measured at two locations 
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for forage corn hybrids and lines.  

Table 2. Mean Squares in ANOVA and Broad-Sense Heritability (h2
B) for 14 Phenotypic Traits 

Measured on 20 Sweet And Forage Corn Single-Cross Hybrids 
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E.Y. E.W. E.L. E.D. N.E.L. N.K.R.E N.K.R. 

Replications 2 25300.32 974.13 6.19 3179.94 4.46 1.50 9.26 

Hybrids 19 535954.54** 10085.64** 15.67** 3352.79ns 18.83** 4.81* 112.61** 

Error 38 24028.74 963.41 3.37 2990.47 0.98 1.30 18.07 

C.V.% 19.23 19.29 9.93 18.63 10.45 7.65 13.51 

h2
B 87.65 75.93 54.88 3.88 85.85 47.36 63.55 

Cont… Table2 
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N.L.P. S.D. P.H. E.H. L.A. CHL N.E.P. 

Replications 2 0.41 0.74 438.54 14.50 3000.56 121.04 0.008 

Hybrids 19 23.09** 44.88** 5513.32** 1913.51** 39097.97** 60.09** 0.63** 

Error 38 0.92 2.85 155.98 31.79 2200.32 16.82 0.09 

C.V.% 8.39 10.70 7.97 10.33 11.12 7.99 20.99 

h2
B 88.92 83.09 91.96 95.17 84.82 46.16 66.66 

   S.O.V: source of variations, d.f.: degree of freedom, C.V.: coefficient of variation. 

Genetic Dissimilarities (dij) 

dij refers to populations of organisms that have significant genetic differences from one 

another, often due to geographical separation or varying environmental pressures. dij among hybrids 

obtained from phenotypic characterization using average Euclidean distance are shown in Table 3. 

The highest phenotypic dissimilarity was obtained between SUD and MSZ, ARM and MSZ, BIL and 

MSZ, ARM and DKB, SUD and DKB, BUR and DKB, BUR and MSZ, BIL and DKB, SUD and 

MFO, SUG and MSZ, KRM and MSZ, SUD and DSF, and DFO and MSZ (dij = 2.46, 2.34, 2.32, 

2.32, 2.30, 2.27, 2.26, 2.18, 2.12, 2.07, 2.02, 2.00, and 2.00, respectively). Due to the dissimilarity in 

gene pools of the populations, natural selection may act on traits that enable a population to adapt to 

changing environments. The greater the GD within a population (Bruford et al., 2017), the more 

adaptable it is likely to be. Several investigations on the use of dij for sweet and forage corn are 

available in the literature (Mustafa, 2021; Ismael, 2023; Abu Sin, 2019). In contrast, SUG and BIL 
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were found to be the most identical hybrids based on their phenotypic performances, with a 

dissimilarity value of 0.33. This suggests that these single-cross hybrids have been developed from 

similar source populations and have exhibited similar performance for most of the phenotypic traits 

measured in the field evaluation (Table 3)  . We could conclude that h2
B and dij are inversely related; a 

higher h2
B (meaning a greater proportion of phenotypic variation is due to genetic factors) typically 

corresponds to lower dij within a population. This is because high heritability implies that individuals 

within the population are more genetically similar for the trait in question. 

Cluster Analysis (CA) 

The CA based on phenotypic distance coefficients exhibited six distinct clusters, designated 

as 1 to 6 (Figure 1). Group 1, consisting of seven sweet corn hybrids ARM, KRM, SNR, SUG, BIL, 

BUR, and SUD, was found to be separated from the other hybrids. Group 2 consists of one sweet 

corn hybrid, TAL. However, foliage corn hybrids SGA, DSF, and MFO were found to be placed in 

Group 3. Hybrid MSZ formed Group 4, while hybrids SBA, NLS, DSN, RSV, AOR, DFO, and MTO 

were left in Group 5. Hybrid DKB was found in group six. The clear separation of sweet corn hybrids 

(Groups 1 and 2) and foliage corn hybrids (Groups 3-6) through cluster analysis highlights the distinct 

breeding goals and genetic makeup of each type. In general, there is an indication that significant 

differences in phenotypic performance existed among the hybrids studied. This indicates that 

phenotypic diversity among the hybrids studied was considerably high for effective hybrid 

development. According to Heryanto et al. (2022), differences in diversity and clustering were likely 

caused by differences in the number and type of traits, as well as the quantity and background of 

hybrids used in each study. Similarly, Mustafa (2021) obtained five main groups from 27 tropical 

sweet corn inbred lines studied based on phenotypic traits. Several researchers have attempted to 

classify corn based on specific sets of phenotypic traits and proposed different recommendations, 

with overall yield and ear traits being highly emphasized as selection criteria (Ismael, 2023; Abu Sin, 

2019). 



MEDIP, Vol.3, No.3:133-150 

141 
 

Table 3. Genetic Dissimilarities Among 20 Sweet and Forage Corn Single-Cross Hybrids Were Determined Using Average Euclidean Distance 

Measured on 14 Phenotypic Traits. Genetic Dissimilarity 
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ARM 
                   

KRM 0.96 
                  

SNR 0.91 0.60 
                 

SUG 0.92 0.72 0.58 
                

BIL 0.86 0.83 0.75 0.33 
               

BUR 0.81 1.04 0.99 0.69 0.61 
              

SUD 1.06 0.88 1.12 0.86 0.74 0.67 
             

TAL 1.98 1.42 1.33 1.61 1.83 1.98 1.96 
            

SGA 1.66 1.36 1.15 1.39 1.62 1.67 1.84 1.08 
           

DSN 1.52 1.12 1.19 1.33 1.52 1.49 1.55 1.39 0.75 
          

SBA 1.50 1.06 1.25 1.17 1.28 1.28 1.27 1.66 1.25 0.70 
         

DKB 2.32 1.85 1.80 1.97 2.18 2.27 2.30 1.56 1.31 1.38 1.59 
        

MTO 1.64 1.37 1.22 1.27 1.42 1.38 1.55 1.58 0.95 0.76 0.77 1.49 
       

MFO 1.95 1.76 1.54 1.75 1.97 1.89 2.12 1.67 0.84 0.94 1.46 1.60 1.06 
      

DFO 1.39 1.13 1.42 1.48 1.56 1.47 1.46 1.82 1.40 0.84 0.87 1.80 1.32 1.58 
     

AOR 1.32 0.91 1.10 1.17 1.33 1.34 1.36 1.56 0.99 0.62 0.89 1.63 1.14 1.21 0.75 
    

MSZ 2.34 2.02 1.74 2.07 2.32 2.26 2.46 1.55 1.14 1.38 1.82 1.59 1.31 1.00 2.00 1.77 
   

DSF 1.87 1.42 1.28 1.58 1.81 1.92 2.00 1.07 0.46 0.84 1.36 1.30 1.12 0.94 1.53 1.07 1.14 
  

RSV 1.38 1.10 1.17 1.40 1.56 1.55 1.61 1.30 0.78 0.55 1.00 1.45 1.11 1.20 0.74 0.69 1.56 0.92 
 

NLS 1.40 1.06 1.30 1.25 1.30 1.25 1.25 1.92 1.52 0.99 0.61 1.80 1.10 1.71 0.74 1.01 1.99 1.68 1.13 
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Figure 1. A dendrogram using UPGMA tree showing the grouping of 20 sweet and forage corn 

single-cross hybrids was conducted based on normalized average Euclidean genetic distance 

coefficients using 14 phenotypic traits. 

Principal Component Analysis (PCA) 

PCA is most commonly used to condense the information contained in a large number of 

original variables into a smaller set of new composite dimensions, with a minimum loss of 

information. PCA was executed using the standardized data obtained from the phenotypic traits of 

the 20 hybrids to classify the main traits that differentiated the hybrids. The eigenvalues of the PCs 

among the calculated standardized data on the hybrids are presented in Table 4 and Figure 2. The 

eigenvalues obtained indicate that they could provide a good description of the data. The first PC 

accounted for 49.32% of the variation out of the total variation (76.26%) among the hybrids. The PC1 

was able to differentiate the hybrids by positive associations with E.Y., E.W., E.L., E.D., N.E.L., 

N.K.R.E., N.L.P., S.D., P.H., E.H., L.A., CHL, and N.E.P. (Table 5). Hence, PC1 was found to be 

associated with the yield traits of the hybrids. Mustafa et al. (2024) performed biplot analysis for 

eight corn hybrids in two seasons, Autumn 2020 and Spring 2021. In the first season, the total 

variation explained was 79.92% (66.33% and 13.59% for PC1 and PC2, respectively). However, the 

second season explained 60.90% of the total variation (38.29% and 22.61% for PC1 and PC2, 

respectively).  

Biplot  

Biplot analysis (Figure 3) illustrated genotype-by-trait relationships, enabling the 

visualization of potential parent genotypes with favorable trait combinations. A positive correlation 

exists between two parameters if the angle between their vectors is less than 90 degrees, and vice 

versa. A biplot depicts the relationship between many traits in this way (also, a measure of 90o angle 

1 

2 

3 

4 

5 

6 
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between two parameters will be treated as no correlation). And right angles, which are equal to 90°, 

or small vectors, indicate no correlation. The principal component Biplot expressed that variables are 

imposed as vectors on the graph (Latif et al., 2015). Acute angles (less than 90o cosine angle) were 

observed between E.Y. and several traits such as E.W., E.L., N.K.R.E., N.L.P., E.H., P.H., N.E.L., 

L.A., S.D., and N.E.P., indicating positive correlations (Figure 4) for forage corn hybrids DSF, SGA, 

MFO, DKB, MTO, RSV, DSN. Conversely, obtuse angles (greater than 90° cosine angle) were noted 

between N.K.R. and E.H., P.H., L.A., E.D., S.D., and N.E.P. for forage corn hybrids MFO, DKB, 

MTO, RSV, DSN, suggesting an absence of correlation among these traits.  

Table 4.Principal Component Analysis Of 14 Phenotypic Traits Associated With 20 Sweet And 

Forage Corn Single-Cross Hybrids. 
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PC1 6.91 49.32 49.32 

PC2 2.30 16.46 65.78 

PC3 1.47 10.50 76.28 

PC4 1.18 8.40 84.68 

PC5 0.66 4.69 89.37 

PC6 0.52 3.71 93.08 

PC7 0.32 2.30 95.38 

PC8 0.29 2.08 97.46 

PC9 0.16 1.18 98.57 

PC10 0.09 0.62 99.19 

PC11 0.05 0.33 99.52 

PC12 0.03 0.24 99.77 

PC13 0.02 0.16 99.93 

PC14 0.01 0.08 100 
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Table 5. Principal Components (PCs) For Phenotypic Traits Measured On 20 Sweet and Forage Corn Single-Cross Hybrids. 
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E.Y. 0.32 0.21 0.14 -0.12 0.25 -0.12 0.45 -0.07 0.35 -0.28 0.31 -0.44 0.15 -0.12 

E.W. 0.37 0.03 0.01 -0.09 -0.02 -0.19 0.22 -0.03 0.10 0.53 -0.03 0.16 0.14 0.66 

E.L. 0.22 0.29 -0.47 0.03 -0.19 0.38 -0.25 -0.002 0.43 0.33 -0.04 -0.10 0.15 -0.28 

E.D. 0.18 -0.05 0.35 0.46 -0.67 0.13 0.14 0.31 -0.06 -0.07 0.10 -0.12 0.15 0.006 

N.E.L. 0.11 0.42 0.44 -0.11 0.36 0.32 -0.03 0.51 -0.05 0.09 -0.26 0.18 -0.07 -0.07 

N.K.R.E. 0.20 0.31 0.46 0.002 -0.17 -0.004 -0.36 -0.67 0.09 -0.10 -0.03 0.11 -0.22 0.03 

N.K.R. -0.008 0.53 -0.40 0.04 -0.23 0.03 0.42 -0.07 -0.26 -0.28 -0.28 0.06 -0.27 0.15 

N.L.P. 0.35 -0.002 -0.20 0.003 0.11 0.29 -0.17 0.09 -0.30 -0.16 0.69 0.23 -0.20 0.14 

S.D. 0.31 -0.24 -0.1 -0.19 -0.16 -0.25 -0.20 0.35 0.43 -0.34 -0.22 0.08 -0.44 0.10 

P.H. 0.36 -0.09 -0.07 0.03 0.14 0.03 -0.30 -0.008 -0.44 0.01 -0.30 -0.67 -0.01 0.132 

E.H. 0.37 -0.07 -0.10 -0.07 0.03 -0.09 -0.06 -0.07 -0.16 -0.36 -0.25 0.41 0.65 -0.16 

L.A. 0.35 -0.13 0.03 -0.10 -0.07 -0.25 0.27 -0.05 -0.27 0.40 -0.007 0.13 -0.31 -0.60 

CHL 0.05 0.23 -0.12 0.74 0.32 -0.47 -0.17 0.09 0.08 0.03 0.04 0.09 -0.05 -0.05 

N.E.P. 0.19 -0.42 0 0.39 0.28 0.50 0.31 -0.27 0.18 -0.06 -0.26 0.11 -0.18 0.04 
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Figure 2. Principal component analysis (PCA) of 14 traits among the 20 sweet and forage corn 

single-cross hybrids. 

The biplot analysis revealed the many ways in which distinct qualities contributed to total 

variation. In addition, it highlighted how traits and genotypes influence plant yield and illustrated the 

diversity of the examined genotypes. Due to this diversity and variability, the relevant trait in the 

germplasm can be enhanced, resulting in enhanced yield performance.  

Figure 3. Biplot analysis for 20 sweet and forage corn single-cross hybrids and the traits measured. 
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Trait Association Analysis 

A correlation plot was measured, providing knowledge on how much each variable 

contributes to the first three PCs and showing the extent of variable contribution for each 

corresponding PC (Figure 4). Observing the plot revealed that PC1 accounted for 49.3% of the 

variance in the dataset and was largely influenced by nearly all input variables, with the exceptions 

of E.L., N.E.L., N.K.R., and Chl. In relation to PC2, which explains 16.5% of the variance, an 

overproportional part of the variance is correlated with the N.E.L., N.K.R., and Chl. E.L. was the 

primary factor influencing PC3, contributing to 10.50% of the variance. Jolliffe and Cadima (2016) 

noted that the first three PCs retained after reducing dimensions explained 76.28% of the variability 

in the datasets. 

Figure 4. Correlation plot of variables VS the three principal components 

CONCLUSION 

In conclusion, the evaluation of 20 hybrids revealed considerable variability in their 

performance, with high heritability (h2
B) for the majority of traits. Multivariate statistical analysis 

(CA and PCA) of phenotypic data clustered the 20 sweet and forage corn hybrids into six distinct 

heterotic groups. Positive correlations, as determined by biplot analysis, were observed between E.Y. 

and several traits, including E.W., E.L., N.K.R.E., N.L.P., E.H., P.H., N.E.L., L.A., S.D., and N.E.P. 

This knowledge will aid in identifying genotypes that can enhance the genetic foundation in programs 

aimed at improving sweet and forage corn. A correlation plot (PCs 1–3) explained 76.26% of the 

variation across the datasets, indicating significant variation among the traits.  

Additional research should focus on collecting, characterizing, and utilizing imported sweet 
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and forage corn single-cross hybrids to select the most adaptive hybrid to be grown in the Kurdistan 

Region of Iraq. Since phenotypic data could be affected by environmental factors, to verify these 

findings, analysis of molecular variations could be performed on the single-cross hybrids as an 

additional tool to assist in the selection process for superior hybrids. At the end, CA and PCA are 

appropriate tools to distinguish genotypes; therefore, I suggest using them continuously for further 

research. 
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