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ABSTRACT

Cluster analysis and principal component analysis are multivariate analyses used widely to assess genetic
diversity. The present study was conducted in the Autumn of 2024 at the Grdarasha experimental station, College of
Agriculture Engineering Sciences, Salahaddin University, Erbil, Iraq, to assess the phenotypic genetic diversity among
20 sweet and forage corn single-cross hybrids using cluster and principal component analysis. Results demonstrated
that the 20 single-cross hybrids were significantly different from each other. Moreover, almost all of the traits studied
showed high broad-sense heritability, which is important for selecting corn single-cross hybrids. Cluster analysis and
principal component analysis revealed a high level of genetic diversity, which has implications for characterizing,
conserving, and breeding sweet and forage corn single-cross hybrids, as well as for categorizing them. The hybrids
under study were divided into six different groups based on the performance of phenotypic traits, indicating that the
hybrids have a varied genetic background. The cluster analysis and principal component analysis were also able to
separate sweet corn well from the forage corn. This indicated the differentiation of the genetic makeup of sweet corn
from forage corn. Biplot analysis showed positive correlations among ear yield and several traits such as ear weight,
ear length, number of kernel rows per ear, number of leaves per plant, ear height, plant height, number of leaves per
ear, leaf area, stem diameter, and number of ears per plant. A correlation of the first three principal component analyses

accounted for 76.26% of the variation, indicating a significant variation among the hybrids studied.-
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INTRODUCTION

Corn is distinguished by a variety of forms with highly differentiated features, both botanical

and of utility character. Among the corn subspecies grown, sweet corn has become increasingly
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important. Its production is constantly increasing in all countries due to its taste and nutritional value,
making it a valued crop (Szymanek et al., 2006). In terms of forage, corn normally produces higher
energy yields than other forage crops, particularly when it contains the leaves, stalks, and ears. It is
an energy-rich feed for livestock (Brewbaker, 2003). The limiting factors of corn growers in the
Kurdistan Region of Iraq are the development, improvement, maintenance, and uncontrolled quality
of inbred lines. Hence, because of the absence of locally produced hybrid seeds, corn farmers must

pay a high price for imported seeds, which raises the price of production (Mustafa et al. 2025).

Genetic variability is a crucial element for developing successful breeding programs and is
essential for adapting to environmental changes. Genetic Diversity (GD) differs from genetic
variability, which pertains to the actual phenotypic differences observed within a specific population
(Suéur et al., 2023). Melchinger and Gumber (1998) reported that various assessment techniques,
including phenotypic markers, pedigree information, heterosis, and molecular markers, have been
used to evaluate GD in plants. Due to their affordability, ease of measurement, and speed, phenotypic
markers have been widely employed to assess GD (Rahman et al., 2015). According to Zafar et al.
(2022), the levels of selection, recombination, mutation, and random genetic drift all influence the
amount of GD in crop germplasm. Selection and genetic drift eliminate certain alleles, while mutation

and recombination introduce new variations into a population.

Various statistical techniques are used to characterize diversity within and between plant
species (Ivandro Bertan et al., 2007). The level of GD can be measured using both univariate and
multivariate methods. Recently, multivariate analyses have gained popularity as a means to estimate
the level of genetic variation across different traits (Chavan et al., 2023). Genetic divergence between
two species or individuals is measured by genetic distance, which helps evaluate the degree of genetic
variation between them (Ivandro Bertan et al., 2007). To ensure all phenotypic variables contribute
equally to the distance calculation, they are typically standardized before applying statistical grouping
methods (Khodadadi et al., 2011). According to Muhammadi and Prasanna (2003), this
standardization eliminates the effects of unit discrepancies in the measurement of each variable on
variances and covariances. Fotokian et al. (2002) stated that standardization reduces differences

between groups.

Cluster analysis (CA) and principal component analysis (PCA) are the two most commonly
used multivariate techniques in GD research (Mohammadi and Prasanna, 2003). CA, as defined by
Peeters and Martinelli (1989) and Chavan et al. (2023), is an essential method for classifying data by
dividing genetic material into several homogeneous groups based on morphogenetic features. In CA,
various algorithms have been employed to study genetic diversity. The most prevalent include: I)

Hierarchical Clustering; II) Non-Hierarchical Clustering (e.g., K-means) (Mohammadi and Prasanna,
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2003); III) Other useful algorithms (e.g., PCA, principal coordinate analysis (PCoA), and

STRUCTURE); and IV) Distance/dissimilarity measures. According to the literature on plant
germplasm collection structure, the most widely used clustering techniques are Ward's method (Ward,
1963) and the Unweighted Pair Group Method of Arithmetic Means (UPGMA) (Sokal and Michener,
1958).

Since PCA does not remove any samples or features, it serves as a foundation for multivariate
data analysis. It is commonly used in plant sciences to reduce large datasets, enhance interpretability,
and minimize information loss simultaneously (Stephen et al., 2016; Chavan et al., 2023).
Additionally, PCA generates two- or three-dimensional scatter plots of individuals, allowing the
genetic distances between genotypes to be represented by the geometric distances between points.
Standardized values are employed to investigate how each attribute contributes to overall variability
(Obeng-Antwi et al., 2011). The initial step in PCA involves calculating eigenvalues, which reflect
the total variance along the PC axes. The first PC accounts for most of the variability in the original
data compared to all other PCs. The second PC explains most of the remaining variability not captured

by the first and is uncorrelated with it, and so forth (Jolliffe, 1986).

A biplot is a type of graph used in multivariate analysis to visualize the structure and
relationships within a dataset, often using the results of principal component analysis (PCA) or
singular value decomposition (SVD). It is a graphical representation that combines information about
both observations and variables. It enables researchers to visualize the relationships between
genotypes and traits, as well as how these relationships change across different environments. The
PCA biplot (Gower and Hand, 1996) is a more modern representation that displays variables with
calibrated axes and observations as points. This allows you to project the observations onto the axes

and approximate the variables' initial values.

Therefore, this study aims to capture the potential phenotypic GD between a set of imported

sweet and forage single-cross corn hybrids grown in the Kurdistan Region of Iraq using CA and PCA.

MATERIALS AND METHODS

Twenty single-cross hybrids of sweet and forage corn, imported from varied origins, were
used in this study (Table 1). These hybrids were chosen based on their adaptability to the Kurdistan
region. This experiment was conducted at the Grdarasha Experiment Station / College of Agricultural
Engineering Sciences / Salahaddin University / Erbil (8 km southwest / 36.101.16" North; 44.009.25"
East, and 415 meters above sea level). The climate of the region is described as semi-arid. The soil

has a silty clay loam texture, and the soil pH was 7.5.
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Table 1. List of The Imported Sweet and Forage Single-Cross Corn Hybrids Used in The Study.

; E 3 S e z g

2 : 5 &3 gz

&)
1 Arma ARM Sweet Corn Single-Cross
2 Krmenia KRM Sweet Corn Single-Cross
3 Snowy River SNR Sweet Corn Single-Cross
4 Sugar SUG Sweet Corn Single-Cross
5 Bilicious BIL Sweet Corn Single-Cross
6 Burpee BUR Sweet Corn Single-Cross
7 Sunny day SUD Sweet Corn Single-Cross
8 Talar TAL Sweet Corn Single-Cross
9 Syngenta SGA Forage Corn Single-Cross
10 DKC6589 DSN Forage Corn Single-Cross
11 SY Batanga SBA Forage Corn Single-Cross
12 Dekalb 6664 DKB Forage Corn Single-Cross
13 MX420 MTO Forage Corn Single-Cross
14 MX580 MFO Forage Corn Single-Cross
15 DKC5401 DFO Forage Corn Single-Cross
16 Agromar AOR Forage Corn Single-Cross
17 MX610 MSZ Forage Corn Single-Cross
18 DKC6664 DSF Forage Corn Single-Cross
19 Reserve RSV Forage Corn Single-Cross
20 NK Lucius NLS Forage Corn Single-Cross

The experimental units were ploughed to a depth of 15-30 cm, fol lowed by soil rotorvation.
Two seeds were manually planted per spot with four 3-meter-1ong rows at a density of 70 cm x 20
cm. The seedlings were thinned to one per point, ten days after planting. Fertilizers were applied
seven days after planting, using NPK 15:15:15 at a rate of 120:120:120 kg/ha. In addition, Urea
fertilizer (46% N) was applied at 15 and 35 days after planting in equal splits. Weeds were manually

controlled. Over the entire plant growth cycle, dripped irrigation was used.

Hybrids were evaluated during the Autumn Season of 2024. Ten plants were selected from
the middle two rows of each hybrid plot. The data were collected for ear yield (E.Y.) (Kg/ha), ear
weight (E.W.) (g), ear length (E.L.) (cm), ear diameter (E.D.) (mm), number of leaves per ear
(N.E.L.), number of kernel rows per ear (N.K.R.E.), number of kernels per row (N.K.R.), number of
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leaves per plant (N.L.P.), stem diameter (S.D.) (mm), plant height (P.H.) (cm), ear height (E.H.) (cm),

leaf area (L.A.), chlorophyll content (CHL), and number of ears per plant (N.E.P.). The hybrids were
evaluated in a Randomized Complete Block Design (RCBD), with three replications. The data
collected were analyzed using the PROC GLM (General Linear Model) of the Statistical Analysis
System version 9.4 software (SAS Institute Inc., 2014). Subsequently, environmental, genotypic, and

phenotypic variances were calculated based on the formula recommended by Johnson et al. (1955).

G2 =MSe .....c..cooiiiiiiiiiiii, 1
MSg—MSe
op = e e 2
T
2 _ A2 2
Op = Og+ 0g ooveiiii 3

Were, MSe = error mean square, MSg = genotypic mean square,and r = replication.

Then, 4%, was calculated based on the formula proposed also by Johnson et al. (1955):

2 ag
hy = = X100 ....c.ccooiiiiiiiiia. 4

%p
I, estimates were categorized based on the scale proposed by McWhirter (1979).
>20%= Low\ 20-50% = Moderate\ < 50% = High

Since the units for phenotypic data varied among traits, the data were first weighted according

to the formula described by Milligan and Cooper (1988), using NTSYS-pc (Rohlf, 2002).

Where: s = standardized value, x;; = observation from ith genotype in j™ block, ¥ = mean

value of measured trait, and o = standared deviation of measured trait .

The standardized data were utilized to construct the resemblance matrix of genetic distance

among the hybrids based on the average Euclidean distance (Sokal and Michener, 1958), as follows:

1
dij = \/; Zk(xki + xkj)z ST ¢}

Where, dij = genetic distance between two hybrids, xxi = phenotypic observation of k™ trait in i™

hybrid, xij = phenotypic observation of k™ trait in j' hybrid, and n = sample size.

There are many computer programs available to do CA and PCA. These include more
specialized programs like SAS, SPSS, NTSYS-pc, Genetix, ADE-4, GenAlEx, and PCAgen (Weising
et al., 2005), and recently, Grapes (Gopinath et al., 2020) and Agri Analyze (trio Radhika et al., 2023)
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could be added, which not only compute multivariate statistics but also graphically present the
analysis's findings. In the present study, the CA was then constructed using the UPGMA following
the Sequential Agglomerative Hierarchical and Nested (SAHN) method by software Numerical
Taxonomy System (NTSYS-pc: Version 2.1) (Rohlf, 2002), to observe GD based on phenotypic
distance coefficients. A biplot analysis was run to visualize the correlation of traits with single-cross
hybrids. The data matrix with columns representing traits, and rows representing the genotypes, was
first standardized and then subjected to PCA to obtain the information on the traits most effective in
discriminating genotypes on the first three PCs using the R package through the General R-shiny
based Analysis Platform Empowered by Statistics in Agriculture part-1 (grapes Agril) Version 1.1.0
(Gopinath et al., 2020).

RESULTS AND DISCUSSION

Performance of hybrids

The Analysis of Variance (ANOVA) is a statistical formula used to compare variances across
different groups' means (or averages). The results of ANOVA conducted for each trait are shown in
Table 2. The block effect was insignificant at p < 0.05 for all measured traits. The impacts of hybrids
were significant (p < 0.05) for all traits measured, except for E.D. The existence of reasonable genetic
variability among these traits could be utilized in sweet and forage corn breeding programs separately
to produce new varieties possessing the desired combinations of these traits. This finding was

consistent with previous reports (Woldemariam, 2004; Mustafa, 2021).
Broad-sense heritability (h’p)

h’p is crucial for assessing the proportion of total phenotypic variance attributable to genetic
factors. Bhardwaj et al. (2020) suggested that selection for traits with very high 4°s (70% or more),
should be easy because the phenotype and genotype synchronize closely due to the minimal impact
of the environment on the phenotype, while traits with low 4’ are extremely difficult or practically
unsuitable for selection because of the tendency of the environments to mask genotypic impact. The
results showed high A’s for most traits studied (Table 2). Indicating that a good match between
phenotypic and genotypic values for most traits measured, and thereby a low environmental impact
on the expression of these traits, and selection for these traits would be simple. High /4?5 for the traits
is controlled by a multigene, which could be useful for selection (Ranjitha et al. 2018). However,
environmental factors influenced E.D. (3.88%), which indicates a low 4°s. Additionally, there were
no significant differences for this particular trait (ED) among the hybrids, as exhibited by ANOVA.
N.R.E. (47.36%) shows moderate 4’ Similarly, high 4’5 in sweet corn was reported by Mustafa

(2021). Mustafa et al. (2021) noted moderate to high estimates for all traits measured at two locations
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for forage corn hybrids and lines.

Table 2. Mean Squares in ANOVA and Broad-Sense Heritability (4°s) for 14 Phenotypic Traits
Measured on 20 Sweet And Forage Corn Single-Cross Hybrids

= &
> 2 =
> = =
E.Y. E.W. E.L. E.D. N.EL. N.KRE NKR.
Replications 2 25300.32 974.13 6.19  3179.94  4.46 1.50 9.26
Hybrids 19 535954.54™  10085.64™ 15.67" 3352.79" 18.83"  4.81°  112.61"
Error 38 24028.74 963.41 337 2990.47  0.98 1.30 18.07
C.V.% 19.23 19.29 9.93 18.63 10.45 7.65 13.51
hs 87.65 75.93 54.88 3.88 85.85  47.36 63.55
Cont... Table2
5 5
> & S
S b = 3
9]

N.L.P. S.D. P.H. E.H. L.A. CHL N.E.P.
Replications 2 0.41 0.74 438.54 14.50 3000.56  121.04  0.008
Hybrids 19 23.09" 4488 5513.32" 1913.51"" 39097.97" 60.09 0.63"

Error 38 0.92 2.85 155.98 31.79 2200.32 16.82 0.09
C.V.% 8.39 10.70 7.97 10.33 11.12 7.99 20.99
h%p 88.92 83.09 91.96 95.17 84.82 46.16  66.66

S.0.V: source of variations, d.f.: degree of freedom, C.V.: coefficient of variation.
Genetic Dissimilarities (dij)

dij refers to populations of organisms that have significant genetic differences from one
another, often due to geographical separation or varying environmental pressures. dij among hybrids
obtained from phenotypic characterization using average Euclidean distance are shown in Table 3.
The highest phenotypic dissimilarity was obtained between SUD and MSZ, ARM and MSZ, BIL and
MSZ, ARM and DKB, SUD and DKB, BUR and DKB, BUR and MSZ, BIL and DKB, SUD and
MFO, SUG and MSZ, KRM and MSZ, SUD and DSF, and DFO and MSZ (dij = 2.46, 2.34, 2.32,
2.32,2.30,2.27,2.26,2.18,2.12,2.07, 2.02, 2.00, and 2.00, respectively). Due to the dissimilarity in
gene pools of the populations, natural selection may act on traits that enable a population to adapt to
changing environments. The greater the GD within a population (Bruford et al., 2017), the more
adaptable it is likely to be. Several investigations on the use of dij for sweet and forage corn are

available in the literature (Mustafa, 2021; Ismael, 2023; Abu Sin, 2019). In contrast, SUG and BIL
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were found to be the most identical hybrids based on their phenotypic performances, with a
dissimilarity value of 0.33. This suggests that these single-cross hybrids have been developed from
similar source populations and have exhibited similar performance for most of the phenotypic traits
measured in the field evaluation (Table 3) . We could conclude that 4’5 and dij are inversely related; a
higher /4’5 (meaning a greater proportion of phenotypic variation is due to genetic factors) typically
corresponds to lower dij within a population. This is because high heritability implies that individuals

within the population are more genetically similar for the trait in question.
Cluster Analysis (CA)

The CA based on phenotypic distance coefficients exhibited six distinct clusters, designated
as 1 to 6 (Figure 1). Group 1, consisting of seven sweet corn hybrids ARM, KRM, SNR, SUG, BIL,
BUR, and SUD, was found to be separated from the other hybrids. Group 2 consists of one sweet
corn hybrid, TAL. However, foliage corn hybrids SGA, DSF, and MFO were found to be placed in
Group 3. Hybrid MSZ formed Group 4, while hybrids SBA, NLS, DSN, RSV, AOR, DFO, and MTO
were left in Group 5. Hybrid DKB was found in group six. The clear separation of sweet corn hybrids
(Groups 1 and 2) and foliage corn hybrids (Groups 3-6) through cluster analysis highlights the distinct
breeding goals and genetic makeup of each type. In general, there is an indication that significant
differences in phenotypic performance existed among the hybrids studied. This indicates that
phenotypic diversity among the hybrids studied was considerably high for effective hybrid
development. According to Heryanto et al. (2022), differences in diversity and clustering were likely
caused by differences in the number and type of traits, as well as the quantity and background of
hybrids used in each study. Similarly, Mustafa (2021) obtained five main groups from 27 tropical
sweet corn inbred lines studied based on phenotypic traits. Several researchers have attempted to
classify corn based on specific sets of phenotypic traits and proposed different recommendations,
with overall yield and ear traits being highly emphasized as selection criteria (Ismael, 2023; Abu Sin,

2019).
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Table 3. Genetic Dissimilarities Among 20 Sweet and Forage Corn Single-Cross Hybrids Were Determined Using Average Euclidean Distance

Measured on 14 Phenotypic Traits. Genetic Dissimilarity

= = ~7 C R -~ a 2 « z <« & o O o & N o= >
] o e <2 72! »n
£ 5 2 & 2 2 & € & & & £ & § 2 g & %
ARM

KRM 0.96

SNR 091  0.60

SUG 092 072 0.58

BIL 0.86 0.83 0.75 0.33

BUR 0.81 1.04 099 0.69 0.61

SUD 1.06 0.88 1.12 086 0.74 0.67

TAL 1.98 1.42 133 161 1.83 198 1.96

SGA 1.66 1.36 1.15 139 162 167 184 1.08

DSN 1.52 1.12 1.19 133 152 149 155 139 0.75

SBA 1.50 1.06 1.25 117 128 128 127 166 125 0.70

DKB 232 1.85 1.80 197 218 227 230 156 131 138 1.59

MTO 164 137 122 127 142 138 155 158 095 0.76 0.77 149

MFO 1.95 1.76 1.54 175 197 189 212 167 084 094 146 1.60 1.06

DFO 1.39 1.13 142 148 156 147 146 182 140 084 087 180 132 158

AOR 132 0091 1.10 117 133 134 136 156 099 062 089 163 114 121 0.75

MSzZ 234 2.02 1.74 2.07 232 226 246 1.55 1.14 138 1.82 1.59 1.31 1.00 2.00 1.77

DSF 187 142 128 158 181 192 200 107 046 084 136 130 1.12 094 153 1.07 1.14
RSV 1.38 1.10 1.17 140 156 1.55 161 130 0.78 0.55 1.00 145 1.11 1.20  0.74 069 1.56 0.92
NLS 140 1.06 1.30 125 130 125 125 192 152 099 061 18 1.10 171 0.74 101 199 168 1.13
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Figure 1. A dendrogram using UPGMA tree showing the grouping of 20 sweet and forage corn
single-cross hybrids was conducted based on normalized average Euclidean genetic distance

coefficients using 14 phenotypic traits.
Principal Component Analysis (PCA)

PCA is most commonly used to condense the information contained in a large number of
original variables into a smaller set of new composite dimensions, with a minimum loss of
information. PCA was executed using the standardized data obtained from the phenotypic traits of
the 20 hybrids to classify the main traits that differentiated the hybrids. The eigenvalues of the PCs
among the calculated standardized data on the hybrids are presented in Table 4 and Figure 2. The
eigenvalues obtained indicate that they could provide a good description of the data. The first PC
accounted for 49.32% of the variation out of the total variation (76.26%) among the hybrids. The PC1
was able to differentiate the hybrids by positive associations with E.Y., EW., E.LL., ED., N.E.L.,
N.K.R.E., N.L.P., S.D., P.H., EH., L.A., CHL, and N.E.P. (Table 5). Hence, PC1 was found to be
associated with the yield traits of the hybrids. Mustafa et al. (2024) performed biplot analysis for
eight corn hybrids in two seasons, Autumn 2020 and Spring 2021. In the first season, the total
variation explained was 79.92% (66.33% and 13.59% for PC1 and PC2, respectively). However, the
second season explained 60.90% of the total variation (38.29% and 22.61% for PC1 and PC2,

respectively).
Biplot

Biplot analysis (Figure 3) illustrated genotype-by-trait relationships, enabling the
visualization of potential parent genotypes with favorable trait combinations. A positive correlation
exists between two parameters if the angle between their vectors is less than 90 degrees, and vice

versa. A biplot depicts the relationship between many traits in this way (also, a measure of 90° angle
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between two parameters will be treated as no correlation). And right angles, which are equal to 90°,
or small vectors, indicate no correlation. The principal component Biplot expressed that variables are
imposed as vectors on the graph (Latif et al., 2015). Acute angles (less than 90° cosine angle) were
observed between E.Y. and several traits such as EEW., E.L., NK.R.E., N.L.P., EH., P.H., NE.L,,
L.A., S.D., and N.E.P., indicating positive correlations (Figure 4) for forage corn hybrids DSF, SGA,
MFO, DKB, MTO, RSV, DSN. Conversely, obtuse angles (greater than 90° cosine angle) were noted
between N.K.R. and E.H., P.H., L.A., E.D., S.D., and N.E.P. for forage corn hybrids MFO, DKB,
MTO, RSV, DSN, suggesting an absence of correlation among these traits.

Table 4.Principal Component Analysis Of 14 Phenotypic Traits Associated With 20 Sweet And
Forage Corn Single-Cross Hybrids.

< £ 2 & @ -
g £ Gl g = £ & §
a = z = S ] i = -:
= o = 8 e -z = 8 b=
- 2 52 E 5 r
~ 8 = ~ O & %
PC1 691 49.32 49.32
PC2 2.30 16.46 65.78
PC3 1.47 10.50 76.28
PC4 1.18 8.40 84.68
PC5 0.66 4.69 89.37
PC6 0.52 3.71 93.08
PC7 0.32 2.30 95.38
PC8 0.29 2.08 97.46
PC9 0.16 1.18 98.57
PC10 0.09 0.62 99.19
PCl11 0.05 0.33 99.52
PC12 0.03 0.24 99.77
PC13 0.02 0.16 99.93
PC14 0.01 0.08 100
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Table 5. Principal Components (PCs) For Phenotypic Traits Measured On 20 Sweet and Forage Corn Single-Cross Hybrids.

§ v— N n - W =) ~ e a < v (o) [ag] <
: ¢ £ g g g £ & € & g g g g @
>
E.Y. 0.32 0.21 0.14 -0.12 0.25 -0.12 0.45 -0.07 0.35 -0.28 0.31 -0.44 0.15 -0.12
E.W. 0.37 0.03 0.01 -0.09 -0.02 -0.19 0.22 -0.03 0.10 0.53 -0.03 0.16 0.14 0.66
E.L. 0.22 0.29 -0.47 0.03 -0.19 0.38 -0.25  -0.002  0.43 0.33 -0.04 -0.10 0.15 -0.28
E.D. 0.18 -0.05 0.35 046  -0.67 0.13 0.14 0.31 -0.06  -0.07 0.10 -0.12 0.15 0.006
N.E.L. 0.11 0.42 0.44 -0.11 0.36 0.32 -0.03 0.51 -0.05 0.09 -0.26 0.18 -0.07 -0.07
N.K.R.E. 0.20 0.31 046  0.002 -0.17 -0.004 -036 -0.67 0.09 -0.10 -0.03 0.11 -0.22 0.03
N.K.R. -0.008 0.53 -0.40 0.04 -0.23 0.03 0.42 -0.07  -026  -0.28 -0.28 0.06 -0.27 0.15
N.L.P. 0.35 -0.002  -0.20  0.003  0.11 0.29 -0.17 0.09 -0.30  -0.16 0.69 0.23 -0.20 0.14
S.D. 0.31 -0.24 -0.1 -0.19  -0.16 -0.25  -0.20 0.35 0.43 -0.34 -0.22 0.08 -0.44 0.10
P.H. 0.36 -0.09  -0.07 0.03 0.14 0.03 -0.30 -0.008 -0.44 0.01 -0.30 -0.67 -0.01 0.132
E.H. 0.37 -0.07  -0.10  -0.07 0.03 -0.09 -0.06 -0.07 -0.16 -0.36 -0.25 0.41 0.65 -0.16
L.A. 0.35 -0.13 0.03 -0.10  -0.07  -0.25 0.27 -0.05  -0.27 0.40 -0.007 0.13 -0.31 -0.60
CHL 0.05 0.23 -0.12 0.74 0.32 -0.47  -0.17 0.09 0.08 0.03 0.04 0.09 -0.05 -0.05
N.E.P. 0.19 -0.42 0 0.39 0.28 0.50 0.31 -0.27 0.18 -0.06 -0.26 0.11 -0.18 0.04
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Figure 2. Principal component analysis (PCA) of 14 traits among the 20 sweet and forage corn

single-cross hybrids.

The biplot analysis revealed the many ways in which distinct qualities contributed to total
variation. In addition, it highlighted how traits and genotypes influence plant yield and illustrated the
diversity of the examined genotypes. Due to this diversity and variability, the relevant trait in the

germplasm can be enhanced, resulting in enhanced yield performance.
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Figure 3. Biplot analysis for 20 sweet and forage corn single-cross hybrids and the traits measured.
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Trait Association Analysis

A correlation plot was measured, providing knowledge on how much each variable
contributes to the first three PCs and showing the extent of variable contribution for each
corresponding PC (Figure 4). Observing the plot revealed that PC1 accounted for 49.3% of the
variance in the dataset and was largely influenced by nearly all input variables, with the exceptions
of E.L.,, N.E.L.,, NK.R., and Chl. In relation to PC2, which explains 16.5% of the variance, an
overproportional part of the variance is correlated with the N.E.L., N.K.R., and Chl. E.L. was the
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primary factor influencing PC3, contributing to 10.50% of the variance. Jolliffe and Cadima (2016)
noted that the first three PCs retained after reducing dimensions explained 76.28% of the variability

in the datasets.
Figure 4. Correlation plot of variables VS the three principal components
CONCLUSION

In conclusion, the evaluation of 20 hybrids revealed considerable variability in their
performance, with high heritability (4’g) for the majority of traits. Multivariate statistical analysis
(CA and PCA) of phenotypic data clustered the 20 sweet and forage corn hybrids into six distinct
heterotic groups. Positive correlations, as determined by biplot analysis, were observed between E.Y.
and several traits, including E'W., E.L., NK.R.E.,, N.L.P., EH., P.H., N.E.L.,,L.A., S.D., and N.E.P.
This knowledge will aid in identifying genotypes that can enhance the genetic foundation in programs
aimed at improving sweet and forage corn. A correlation plot (PCs 1-3) explained 76.26% of the

variation across the datasets, indicating significant variation among the traits.
Additional research should focus on collecting, characterizing, and utilizing imported sweet
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and forage corn single-cross hybrids to select the most adaptive hybrid to be grown in the Kurdistan
Region of Iraq. Since phenotypic data could be affected by environmental factors, to verify these
findings, analysis of molecular variations could be performed on the single-cross hybrids as an
additional tool to assist in the selection process for superior hybrids. At the end, CA and PCA are
appropriate tools to distinguish genotypes; therefore, I suggest using them continuously for further

research.
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